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ABSTRACT 
Finite element method is used to solve the two dimensional governing mass, momentum and energy 

equations for steady state, natural convection problem inside a square enclosure. The enclosure 

consists of adiabatic top and bottom walls, cool left and right walls and a uniformly heated circular 

solid body located somewhere inside the enclosure. The aim of this study is to describe the effect of 

the presence of circular heated obstacle on natural convection. The investigations are conducted for 

different values of Rayleigh number (Ra), obstacle diameter (D) and location of obstacle Centre (Cx, 

Cy) inside the enclosure. Various results such as streamlines, isotherms, heat transfer rate in terms of 

the average Nusselt number and average fluid temperature inside the enclosure are presented for 

different parameters. The results indicate that the average Nusselt number at the heated surface and 

average temperature of the fluid inside the enclosure are strongly dependent on the configuration of the 

system under different geometrical and physical conditions. 
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Nomenclature 
 

pc  Specific heat at constant pressure   yx,  Cartesian coordinates  

g gravitational acceleration ][ 2ms   YX ,  dimensionless Cartesian coordinates 

h  Convective heat transfer coefficient ][ 12  KWm   (Cx, Cy) circular obstacle centre  

k  Thermal conductivity of fluid ][ 11  KWm  Nu  average Nusselt number  

T  Dimensional temperature ][K    P  dimensionless pressure  

T  Dimensional temperature difference ][K   Pr Prandtl number 

vu,  Dimensional velocity components ][ 1ms   Ra Rayleigh number  

VU ,  Dimensionless velocity components  D              Diameter of circular obstacle ][m  

p  Dimensional pressure ][ 2Nm  
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INTRODUCTION 
 

Natural convection is an essential mechanism of heat transfer in modern technology due to its 

wide applications. Various numerical and experimental investigations are done without and 

with obstacle in the various shaped enclosure because these geometries have practical 

applications in engineering and industrial fields. Some mentionable fields are cooling of 

electronic devices, air conditioning, thermal design of building, design of solar collectors, 

chemical processing equipment, drying technologies etc. Literature review shows that various 

investigations are done on the mechanism of natural convection in a square enclosure 

containing various fluids with different geometrical parameters and boundary conditions. 

Parvin and Nasrin analyzed the flow and heat transfer characteristics for MHD free 

convection in an enclosure with a heated obstacle. They showed that the free convection 

parameter Ra and the diameter of circular body have significant effect on the flow and 

temperature fields. Chowdhury et al. investigated the natural convection in porous triangular 

enclosure with a circular obstacle in presence of heat generation. They showed that the fluid 

flow and temperature field strongly depend on the presence of the circular body and the 

average Nusselt number significantly worse with increasing both heat generation and size of 

the obstacle. House et al. investigated the effect of a centered, square heat conducting body 

on natural convection in a vertical enclosure. They showed that heat transfer across the cavity 

enhanced or reduced by a body with a thermal conductivity ratio less or greater than unity. 

Kandaswamy et al. investigated natural convection in a square cavity in presence of heated 

plate. They showed that for the increasing value of Gr heat transfer rate increases in both 

vertical and horizontal situation. As the aspect ratio of heated thin plate increases the heat 

transfer also increases. Mousa investigated the modeling of laminar buoyancy convection in a 

square cavity containing an obstacle. They found that in case of low Rayleigh numbers (102 –

104), the rate of heat transfer decreases when the aspect ratio of the adiabatic square obstacle 

increases. In case of relatively high Rayleigh numbers (105 –106), the maximum heat transfer 

rate increases when the aspect ratio of the adiabatic square obstacle increases. Rahman et al. 

investigated the effect of presence of a heat conducting horizontal square block on mixed 

convection inside a vented square cavity by using finite element method. They found that the 

block size and location have significant effect on both the flow and thermal fields but the 

solid-fluid thermal conductivity ratio has insignificant effect on the flow field. Roslan et al. 

investigated the natural convection in an enclosure containing a sinusoidal heated cylindrical 

source. They showed that heat transfer rate tends to increase by oscillating the source 

temperature signal. The maximum heat transfer augmentation is obtained at about frequency 
25  to 30 for high heating amplitude and a moderate source radius. Rahman et al. studied 

numerically the mixed convection in a square cavity with a heat conducting square cylinder at 

different locations. They showed that the flow field and temperature distributions inside the 

cavity are strongly dependent on the Richardson numbers and the position of the inner 

cylinder. Saleh et al. investigated the natural convection heat transfer in a nano fluid-filled 

trapezoidal enclosure. They found that the structure of fluid flow within the enclosure 

depends upon Grashof number, inclination angle of slopping wall and nanoparticles 

concentration and type. Uddin et al.  investigated the natural convection flows in a 

trapezoidal enclosure with isoflux heating from below. They showed that the average Nusselt 
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number increases with the increase of Rayleigh number and the effect of the sidewall 

inclination angle on heat transfer is significantly reduced at higher Rayleigh number. 
 

Physical model 
 

 

 

 

 

  

      
                                   

Fig 1.  Schematic view of the enclosure considered in present study 

 

Mathematical formulation 
 

In the present problem, it is assumed that the flow is steady, two-dimensional, laminar, and 

incompressible and there is no viscous dissipation. The gravity force acts in the vertically 

downward direction, fluid properties are constant and fluid density variations are neglected 

except in the buoyancy term (Boussinesq approximation) and radiation effect is neglected. 

Under the usual Boussinesq approximation, the governing equations for the present problem 

can be described in dimensionless form by the following equations. 
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The dimensionless variables are defined as: 
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The governing parameters in the preceding equations are the Rayleigh number 
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and Prandtl number 
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The associated dimensionless boundary conditions are as follows: 
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At the circular body surface 1),(,0),(),(  YXYXVYXU   

The average Nusselt number at the heated wall of the circular body surface is defined as 
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 and S is the non-dimensional coordinate along the 

circular surface. The bulk average temperature in the enclosure is defined as
 dS
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NUMERICAL TECHNIQUE 

 

The numerical procedure used in this work is based on the Galerkin weighted residual 

method of finite element formulation. The application of this technique is well described by 

Taylor and Hood and Dechaumphai. In this method, the solution domain is discretized into 

finite element meshes, which are composed of non-uniform triangular elements. Then the 

nonlinear governing partial differential equations (i.e. mass, momentum and energy 

equations) are transferred into a system of integral equations by applying Galerkin Residual 

method. The integration involved in each term of these equations is performed by using 

Gauss’s quadrature method. The nonlinear algebraic equations so obtained are modified by 

imposition of boundary conditions. These modified nonlinear are transferred into linear 

algebraic equations by Newton-Raphson iteration. Finally, these linear equations are solved 

by using Triangular Factorization method. 

 

Numerical validation: 

To validate the present numerical code, the results for natural convection flow around a 

heated circular obstacle placed somewhere in the enclosure have been compared with those 

obtained by Parvin and Nasrin. The comparison of the results obtained from present code 

with those of Parvin and Nasrin is demonstrated for two different Rayleigh numbers 310Ra  

and 510Ra at Ha=50, D=0.25, Pr=0.7 in fig.2. As seen from these figures the obtained 

results show very good agreement. 
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Fig 2. Comparison of streamlines and isotherms between present model (lower) and the model of 

Parvin and Nasrin (upper) at Ha=50, D=0.25, Pr=0.7 

 

RESULTS AND DISCUSSION 
 

 

A numerical study has been performed through finite element method to analyze the laminar 

natural convection heat transfer and fluid flow in a square cavity containing a horizontal 

circular obstacle. Effect of the dimensionless parameters such as Rayleigh number (Ra), 

dimensionless obstacle diameter (D), and the centre position of heated obstacle (Cx, Cy) on 

heat transfer and fluid flow have been analyzed. The result is presented in two sections. The 

first section has focused on flow and temperature fields, which contains the streamlines and 

isotherms for different cases. Heat transfer including average Nusselt number at heated 

surface and average fluid temperature in the enclosure has been discussed in the following 

section. The ranges of Ra and D in this investigation vary from Ra=10
3
 to 10

7
 and D=0.10 to 

0.60. Centre position (Cx, Cy) of heated obstacle are considered at (0.25, 0.25), (0.25, 0.75), 

(0.75, 0.25) and (0.75, 0.75) while the Prandtl number Pr is kept fixed at 0.71. 

The influence of Rayleigh number Ra (from Ra=10
3
 to 10

7
) and obstacle diameter D (from 

0.10 to 0.60) on streamlines for the present configuration at Pr=0.71 and centre position (Cx, 

Cy) at (0.5, 0.5) has been demonstrated in Fig.3. Fluid flow has been affected by the 

buoyancy force created by the temperature difference of circular body and vertical side walls. 

For Ra=10
3
 at D=0.10 it has created two separate vortices near two cold vertical walls. As D 

increases to 0.30, the vortices become larger creating two more inner vortices. Further 

increase of D enlarges the size of inner and outer vortices occupying the whole enclosure. For 

Ra=10
5
, the streamlines behave almost the same as that of Ra=10

3
. For Ra=10

7
, vortices 

accumulate in the vicinity of upper wall. With the increasing value of D the vortices 

gradually occupy the whole enclosure creating more inner vortices. The influence of Rayleigh 

number Ra (from Ra=10
3
 to 10

7
) and obstacle diameter D on temperature field for the present 

configuration at Pr=0.71 and centre position (Cx, Cy) at (0.50, 0.50) has been demonstrated in 

Fig.4. The high temperature region exists in the two vertical sides of the circular obstacle and 

the isothermal lines are linear and parallel to the vertical walls for Ra=10
3
. 
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Fig 3. Streamlines for different values of Ra and D with Pr=0.71 and centre at (0.50, 0.50) 
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Fig 4. Isotherms for different values of Ra and D with Pr=0.71, centre at (0.5, 0.5) 

 

 

With the increasing value of Ra the isothermal lines become more curved from both the sides. 

Further increase of Ra creates a plume in the upper side of obstacle and isothermal lines 
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become almost parallel to horizontal walls changing their direction. Besides this, the 

isothermal lines are concentrated near the heated obstacle with the increasing value of D. The 

effect of obstacle location on streamlines for the present configuration at Pr=0.71 and 

D=0.30 has been demonstrated in Fig.5. When the center of inner obstacle is situated at 

(0.25, 0.25) as shown in bottom row of Fig.5, for Ra=10
3
 a small vortex in the left top side 

and a large vortex in the right side are created. As Ra increases to 10
5
 the small vortex 

becomes larger. At Ra=10
7
 the concentration of both vortices increases and occupies the 

whole enclosure. At the same time the small vortex becomes a tri-cellular vortex. 
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              Fig 5. Streamlines for different values of Ra and different position of obstacle centre 

               with Pr=0.71 and D=0.30 

 

The behavior of streamlines for other locations of center is almost the same. The mentionable 

change is for all the cases vortices are created in the opposite side of circular obstacle i.e. in 

the larger unoccupied space of the enclosure. The effect of obstacle location on isotherms for 

the present configuration at Pr=0.71 and D=0.30 has been demonstrated in Fig.6. When the 

center of inner obstacle is situated at (0.25, 0.25) as shown in bottom row of Fig.6. For 

Ra=10
3
 and various locations of obstacle centre, the isotherms nearer to obstacle are found to 

concentrate the heated obstacle and the isotherms which are far from the obstacle are almost 

parallel to the vertical walls. As Ra increases to 10
5
, the concentration of isothermal lines in 

the vicinity of heated obstacle increases. At the same time the bending of isothermal lines 

increases and created a plume shape in the upper side of the obstacle. At Ra=10
7
 the bending 

of the isothermal lines and concentration near the heated obstacle both are increased and they 

form an unstable shape. 
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Fig 6. Isotherms for different values of Ra and different position of obstacle center with Pr=0.71 and 

D=0.30 

 

In order to evaluate how the obstacle size affects the heat transfer along the heated surface, 

the average Nusselt number is plotted as a function of Rayleigh number as shown in Fig. 7(a) 

for four different obstacle sizes (D=0.10, 0.30, 0.50 and 0.60) while Pr=0.71 and obstacle 

center at (0.5, 0.5).  

  

Fig 7. (a) average Nusselt number                 (b) average temperature with Pr=0.71 and   

      centre at (0.5, 0.5) 

 

It is observed that Nu decreases with the increasing value of diameter and increases with the 

increasing of Ra. Also Fig. 7(b) depicts the average temperature of fluid as a function of 

Rayleigh number Ra while Pr=0.71 and obstacle center at (0.5, 0.5). It is observed that fluid 
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temperature increases with the increasing value of diameter but it decreases slightly with the 

increasing value of Ra. 

 

CONCLUSION 

 

A numerical investigation is made for steady-state, incompressible, laminar natural 

convection flow in a square enclosure containing a heated circular obstacle. Results are 

obtained for wide ranges of parameters Rayleigh number (Ra), dimensionless obstacle 

diameter (D) and the location of circular obstacle (Cx, Cy). The major findings have been 

summarized as follows: 

 The free convection parameter Ra affects strongly the streamline distribution in the 

enclosure. As a result buoyancy force induced circulation cell increases with the 

increasing value of Ra.  

 The diameter of the circular obstacle has a significant effect on the flow and temperature 

fields. The recirculation cell in the streamlines increases and the isothermal lines near the 

heated surface become denser with the increasing value of D. 

 Locations of the circular obstacle do not affect the flow and thermal fields significantly. 

 The average Nusselt number Nu at the circular body surface is enhanced for larger values 

of Ra and lower values of D. 
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